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ABSTRACT
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(with finite wave speeds) in materials with memory. Under assumptions that ensure com-
patibility of our constitutive relations with the second law of thermodynamics, the resulting
integrodifferential equation is hyperbolic near equilibrium. We establish the existence of
unique, global (in time) defined, classical solutions to the problems under consideration,
provided the data are smooth and sufficiently close to equilibrium. We treat both Dirichlet
and Neumann boundary conditions as well as the problem on the entire real line.
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by deriving a priori energy estimates. These estimates are based on inequalities for strongly
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0. Introduction

In this paper we establish global existence and asymptotic stability of solutions to

initial-value problems arising from integral models for heat flow that were introduced in

[2]. These models are based on Gurtin and Pipkin's theory of heat conduction [6]. The

situations we are concerned with are such that the heat flux depends on the temporal

history of the temperature gradient (and possibly on the present value and the history of

the temperature), but is independent of the present value of the temperature gradient.

As in [2], we restrict our attention to one-dimensional rigid heat conductors in which

the only nonzero component of the heat flux is its x-component, q. Here q and the ab-

solute temperature 0 > 0 are functions of x and time t. Moreover, we assume that the

material under consideration is homogeneous and has unit density. The first two laws of

thermodynamics then take the form

et + qx = r, (0.1)

'7 + r, (0.2)

where e = e(x, t) is the (specific) internal energy, r = r(x, t) is the external heat supply,

and 17= q(x, t) is the (specific) entropy. Subscripts t and x indicate partial derivatives. If

we define the (specific) free energy ? = ?k(x, t) through

-077 (0.3)

then the law of balance of energy (0.1) and the entropy inequality (0.2) can be combined 0
0

to give the Clausius-Duhem inequality n -

q9;
Ot9 +<7t 0. (0.4) #

Avali and/or
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Gurtin and Pipkin consider materials characterized by constitutive equations that

express O(x,t), r(x,t), and q(x,t) as functionals of (9(x,t), 6t(X, .), 61(x,.)). Here 9 t and

6' denote the summed histories up to time t of the temperature and the temperature

gradient. The summed history up to time t of 9 is defined by

(Xs):= j (x,z)dz VxeB, s > 0, (0.5)

where B C IR denotes the interval occupied by the body. Gurtin and Pipkin require

that their constitutive relations be compatible with thermodynamics in the sense that

the Clausius-Duhem inequality (0.4) is satisfied for all smooth processes consistent with

the constitutive relations. They derive conditions that are both necessary and sufficient

for compatibility with thermodynamics. These conditions can be summarized roughly as

follows:

(i) the entropy is minus the derivative of the free energy with respect to the present value

of the temperature;

(ii) the heat flux is determined from the free energy through a differential equation called

the heat flux relation;

(iii) a functional differential inequality called the dissipation inequality holds for all smooth

processes.

We note that by virtue of (0.3), condition (ii) implies a relation between q and e and hence,

e will generally depend on 6.

MacCamy considered a model motivated by Gurtin and Pipkin's linearized constitu-

tive equations [10). He replaced the linear equation for the heat flux with

q(X, t) = - j a(s)f(0.(x, t - s))ds, (0.6)
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but retained the linear equation for the internal energy

e(x,t) = b-+ cO(x,t) - j 0'(s)O t(x,s)ds (0.7)

= b+ co(x,t) + fj P(s)O(x,t - s)ds.

Here b and c are constants, a and #l are smooth kernels that decay sufficiently rapidly at

infinity, and f is a smooth function. MacCamy proved global existence and asymptotic

stability for a corresponding initial/boundary-value problem. Similar existence theorems

for MacCamy's model were established by Dafermos and Nohel [5] and Staffans [12].

MacCamy does not address the issue of compatibility with thermodynamics. However,

one can show that there are smooth processes consistent with (0.6), (0.7) but for which an

inequality implied by (0.4) is violated; within the context of [5], [10], and [12] this probably

is not a serious difficulty since the solutions discussed there remain close to equilibrium

(i.e. close to a state where 9 is a constant and ,, = 0), and under reasonable assumptions

on a, f, and f the aforementioned inequality is satisfied by a suitable class of processes

that are close to equilibrium. (See Section 1 of [2] for further details.)

Here we consider the constitutive relations'

O(X,t) = (0(x,t) + j (s, 0(x,t), 0(x,s), O.(x,s))ds,

7(X,t) = -'(0(X,t)) - j T,2 (S,o(x,t), 0t(x, s), 0.,(x,s))ds, (0.S)

00

q(x, t) = O(x, t)]f 'P,4 (., O(X,t), 0t(x, s), 0.,,(x, s))ds,

and hence by (0.3) we have

e(X, t) = (0(X, t)) + j E(s, (x, t), 0t (x, s), 6'(x, s))ds (0.9)

' Wc use Fj to denote the partial derivative of a function F with respect to it- j-t
argument.
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with

g(V) := (V) - vi'(v), )(, ,7 ay)= 7 - V, (S, v, a-)

(0.10)
Vs, v > 0, a > 0, y IR.

Here %I is normalized so that

,'(s,v, vs, 0) = 0 Vs,v > 0 (0.11)

and 41 satisfies hypotheses which ensure that the integrals in (0.8) will be well behaved for

a reasonable class of functions 8.

We assume that '1 satisfies

'I',l (s,v,a,7)±z'+I', 3 (s,V,k,y) __0 Vs,V >O,a>O, -yR (0.12)

and thus by the main result obtained in [21 the constitutive relations (0.8) are compatible

with thermodynamics and

'i(s, V, vs, 0)-O = j01, 2,3,4 Vs, v>O0. (0.13)

Substitution of (0.8)3 and (0.9) into the law of balance of energy (0.1) yields

i~j(9(X,t), 6'(X,.), 6'(X,.))o,(x,t) + Q(s, 9(x, t), Ot(r, s), #'(x, s))ds

+ j E, 3 (s, O(X, t), G(x,.s), jG(x, s))[O(x, t) - o(x, t - s)]ds

+ jo F,4 (s, 8(x,t), Gt(x, s), 9' (x, s))[o (x, t) - o (x, t - s)]ds = r(x, t)

xeB, t > 0.

Here Q is given by

Q(s,v,a,y) -V'I, 4 (s,v,awy) Vs, v > 0, a > 0, yelR (0.15)
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and

(0.16)
+ j A, (s, O(X, t), i t(X, S) i.(X, s))ds

is the instantaneous heat capacity at (O(x, t), #t(x, .), #t (x, .)); the equilibrium heat capac-

ity cE(v) at the temperature v is given by

CE(V) := 8'(V). (0.17)

It is generally assumed in practice that the heat capacities are positive.

We seek a smooth solution to (0.14) subject to the initial conditions

O(x,t) = V(x,t) xeB, t < 0,
(0.18)

O(x,o) = 00(x) xeB,

and appropriate boundary conditions if B 5 JR. Here V > 0 and O0 > 0 are prescribed

smooth functions. Observe that (0.18) permits a temporal jump discontinuity in 9 at

t = 0. Even if such a discontinuity is present in the data one can obtain a solution that

is smooth for t > 0 provided that 0 and r(.,0) satisfy certain compatibility conditions at

the endpoints of B.

It follows from the arguments of Gurtin and Pipkin [6] that compatibility with ther-

modynamics, strict positivity of the equilibrium heat capacity, and some assumptions of

nondegeneracy imply that equation (0.14) is of hyperbolic type near equilibrium. The char-

acteristic speeds for (0.14) are not constant and it is therefore possible that weak waves

will be amplified and shocks will develop. On the other hand, equation (0.14) includes a

natural damping mechanism induced by memory. It is not clear which effect is dominant.

A great deal of insight into this question is given by Chen [3] who assumed the existence
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of solutions containing singularities called temperture rate waves, and obtained a formula

for the amplitude of these waves. He found that an amplitude of small initial value decays

as t --+ oo, and if the initial amplitude is large then blow up may occur in finite time. This

suggests that when the data are close to equilibrium equation (0.14) has a global solution,

whereas if the data are sufficiently far away from equilibrium the solution may develop

singularities in finite time.

In order to keep the analysis relatively clean, while retaining the important features

of (0.14) we treat the following special case in detail:

,(',t) = O((x, 0) - xj a'(i)F(6t (x, s))ds,

,(x,t) = - '(O(X,t)) - I, j a'(s)F(9t(X, ,s))ds, (0.19)

q(x,t) = a'()F'(6'(x, s))ds.

Here ¢ : (0, cc) -+ IR, a : [0, oo) -+ IR, and F : IR -- IR are smooth functions with

aeW3' 1 (0, co) and F(0) = 0. We assume that

a is convex, F(y) >_ 0 V -elR; (0.20)

the arguments used in [2] can be applied in the present setting to show that (0.20) implies

that the constitutive equations (0.19) are compatible with thermodynamics. We note that

by (0.20) we have

a' < 0, a > 0, F'(0) -0, F"(0) > 0. (0.21)

The corresponding equation for e is

e(x,t) = (o(x,t)) - ( t a'(s)F( (xs))ds,
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where i is as in (0.10)1. Thus (0.1) yields

(V'(9(x, 0) + /(X 2 ,0'(s)F(t(x, s))ds)Ot(x, t)

+ /0a'(s)F"(9.t(X, s))9.t.(x, s)ds
00 (0.23)

2 a'(s)F'(9t(x, s))[O(x, t) - .(x, t - s)]ds =r(x, t)

x eB, t > 0.

We establish global existence and asymptotic stability of smooth solutions to the initial-

value problem (0.23), (0.18) for smooth data (r,W, 00) that are close to equilibrium. We

treat Dirichlet and Neumann boundary conditions as well as the problem with B = IR. We

also make some remarks concerning the extension of our work to the initial-value problem

(0.14), (0.18).

To indicate the nature of our results let us consider the case where B = [0, 1],

(p = 00 = 8, with Dirichlet boundary conditions

0(0, t) = 9(1,t) - 0* t > 0, (0.24)

where 9* > 0 is a gien constant.

In order to prove global existence of solutions to (0.23), (0.24), (0.18) we need to

make additional assumptions on the constitutive relations and on the data. Concerning

the constitutive equations we require that

a # 0 (0.25)

and we strengthen the inequality (0.21)4 to the strict inequality

F"(0) > 0. (0.26)
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These two conditions imply that the linearized relation for the heat flux is nontrivial. We

also assume that the equilibrium heat capacity is strictly positive, i.e.2

6'(v) > 0 Vv > 0. (0.27)

Assumptions (0.25) - (0.27) imply that equation (0.23) is hyperbolic near equilibrium.

Since we have dependence on the summed history of the temperature gradient (for which

we do not obtain a pointwise bound), we need to make a growth restriction on F that is

related to the decay rate of a. In addition, we assume that the heat supply r is smooth,

decays with time, and is small in a sense that will be stated more precisely later. Moreover,

to ensure the existence of smooth classical solutions the heat supply r must satisfy the

condition

r(o, 0) = r(1, 0) = rt(o,0) = r o(,0) = 0, (0.28)

which guarantees compatibility of the data with the boundary conditions at t = 0. We

note that our assumptions imply that a is a strongly positive definite kernel in the sense

of [11]. Inequalities for such kernels play an essential role in the proof of global existence.

Observe that if r =- 0, then 0 = 0" is a solution. We look for classical solutions to

(0.23), (0.24), (0.18) near the prescribed equilibrium temperature 9* for t > 0. We show

that (0.23), (0.24), (0.18) has a unique solution 0 > 0 with 0, ox, t, Ot , 9XX , OtI, ol ,

9 =,, Xt), ,,t e C([0, [O); L 2 (0, 1)) and 0, 9=, Ot, O.,9, Ox,, 9tEL2((0, oo); L2 (O, 1)) n

L'((0, oo); L2 (0, 1)). Moreover, as t --+ oo, 0(.,t) --+ 9* and Gx(.,t), 0(.,t) --+ 0 uniformly

2 For our purposes it suffices to assume that i'(9") > 0; however, assumption (0.27) is

in accord with experience and leads to certain simplifications in the proofs of Theorems
1.2 and 1.3.
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on [0, 1]. An analogous result can be obtained for Neumann boundary conditions as well

as for the problem with B = IR.

The arguments used to prove global existence in [5], [10], and [12] for MacCamy's

model are similar in spirit to the arguments used here. The primary differences between

our existence proof and those for MacCamy's model arise from the dependence of e on the

summed history of 0,. This dependence complicates the analysis and necessitates the use

of a new inequality for strongly positive definite kernels. Global existence is obtained by

deriving a priori estimates; in these derivations we exploit the compatibility of our con-

stitutive relations with thermodynamics, i.e. we make use of the entropy inequality (0.2).

It is interesting to note that one can obtain an existence result for (0.23), (0.24), (0.18)

without utilizing the thermodynamical restrictions, provided the linearized equation has

the appropriate features. However, the compatibility conditions imposed on our constitu-

tive relations by the thermodynamical restrictions allow us to establish a global existence

result under less restrictive assumptions on the data.

The paper is organized as follows. Precise statements of global existence results are

given in Section 1. Section 2 is concerned with appropriate local existence results and

with properties of strongly positive definite kernels relevant to our needs. Section 3 is

devoted to the proof of the theorems stated in Section 1; the proof for the problem with

Dirichlet boundary conditions is discussed in detail and remarks are made concerning other

boundary conditions.
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1. Statement of Results

We first consider the problem

(V'(X, t)) + 62 j a'(s)F(6.(x, s))ds)O,(x, t)

+ a'(s)F"(9t(x,s))9,;(x,s)ds

2 a'(,F,( (x,s)) [0.(xt) - 0,(x,t - s)Ids = r(xt)
(x 0)

x e[0o,], t> ,

O(Xt) 0 X' [0, 1],t <o, (1.2)

9(X, 0) = 0o(X) x [0,1], (1.3)

(0,t) = 0(1,t) = * t > 0. (1.4)

Here, 0* > 0 is a given constant and 0o : (0, 11 --* (0, oo) is a prescribed smooth function.

Concerning a, F, and a we require

e C 4 (0,oo), (1.5)

'(v) > 0 Vv > 0; (1.6)

F e C(IR), (1.7)

F(0) = 0, F"(0) > 0, F(y) >0 V-re IR, (1.8)

and there are constants K > 0, k > 1 such that

JF(j)( ) - F(')(0)l :S K(kI, + 1 jk) j 0, 1,2, 3,4, 5, &IR; (1.9)

aeW 3'1(0, oo), a is strongly positive definite, a" > 0, (1.10)
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and

j IaP(z)Iz kdz, j ja(z)zkdzdsj a ) (1.11)

j j la"(z)Izkdzds, j a"'(z)Izkdz < o.

The definition of a strongly positive definite kernel is given in the next section. For now,

it suffices to know that

(i) (1.10)1,2 implies a(0) > 0;

(ii) if a e W3', (0, oo), a # 0, and a" > 0 then a is strongly positive definite.

The data are assumed to have the following regularity:

Oo e H 3 (0,1), (1.12)

r, r., r,, ,, rt e C([0, co); L 2 (0, 1)) n L2((0, oo); L 2 (0, 1)) n L'((0, oo); L 2 (0, 1)), (1.13)

r(., 0) f H 2 (0, 1), rttteL2((0, oo); L 2(O, 1)). (1.14)

We also assume that the following compatibility conditions hold on the boundary:

G0(0) = 60(1) = 6, (1.15)

r(0,0) -r(1,0) = 0, (1.16)

rt(O, 0) = a(0)F"(0) (-9'(0) + 29 0(0)2), (1.17)

rt(1,0 - a(0)F"(0) (-0 '(1) + -9 (1)2). (1.18)

The interpretation of (1.15) is rl-.r; conditions (1.16) - (1.18) ensure that Ot(.,O) and

t,(., 0) vanish on the boundary. In order to state our results, it is convenient to define

00 ([O0(X) - 0*12 + 01,(X) 2 + 0'o'(X) 2 )dx (1.19)
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and
Ro := sup (r' + r')(xt)dx + r'(x, O)dx + ( sup r(x,t)

t>o (1.20)

+ j j(r 2 + rt + r't)(x,t)dxdt.

We establish the following result.

Theorem 1.1: Assume that (1.5) - (1.11) hold. Then there is a constant 6 > 0 such that

for all 90 and r satisfying (1.12) - (1.18) and

0 0 +Ro < 62, (1.21)

the initial-value problem (1.1), (1.2), (1.3), (1.4) has a unique solution 0 > 0 with

0, x , Ot , Oxx x, Ott, Oxxx, Oxxt, Oxtt, Ott f- C([o, o ); L2 (0, 1)) (1.22)

and

0, 0.1,Ot, O.X, ot, Ott EL°((O, oo); L2(O, 1)) r L 2((O, oo); L 2(O, 1)). (1.23)

Moreover, as t -- oo

0(.,t) 9 0* (1.24)

and

0 (.,t), Ot(.,t) - 0 uniformly on [0,1]. (1.25)

Remark 1.1: The constant 6 in Theorem 1.1 depends on 9* and on properties of the

functions appearing in the constitutive relations.

Remark 1.2: By the Sobolev embedding theorem, (1.22) implies that 9 f C 2([0, 1] x [0, c0)).
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A result analogous to Theorem 1.1 can be established if we replace the Dirichlet

boundary conditions (1.4) with Neumann boundary conditions

e;(0,t) = 0"(1,t) = 0 t > 0. (1.26)

Remark 1.3: Under the assumptions of Theorem 1.2 below (1.26) holds if and only if

q(O,t)=q(1, t)=0 t>0. (1.27)

(Recall that the heat flux, q, is given by (0.19)3.) It is obvious that (1.26) implies (1.27). In

order to show that (1.27) implies (1.26) we first differentiate the relation for the heat flux

(0.19)3 with respect to t on the boundary, making use of (1.2). We then add and subtract

terms to obtain the identity

a(0)9,( , t) + j a'(t - s)Ox( ,s)ds

= ) j ( ,s) j a'(y) j (F"(z#(, y)) - F"(0))dzdyds (1.28)

0 t>0.

We can now solve (1.28) for 0, and make use of Lemma 2.3 below to show that (1.26) is

the only continuous solution of (1.28) that vanishes at t = 0.

We now require that r satisfy (1.13), (1.14), and

r o L' ((0, oo); L2 (0, 1)); (1.29)

in addition we assume that the compatibility conditions

0'(0) = 0'(1) = 0, (1.30)
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r(0,0) = r(1,0) = 0, (1.31)

rt(o, 0) = -a(0)F"()O'(0), (1.32)

rt(1, 0) = -a(0)F"(o)O'(1) (1.33)

hold.

Theorem 1.2: Assume that (1.5) - (1.11) hold. Then there is a constant 6 > 0 such that

for every 0o and r that satisfy (1.12) - (1.14), (1.29) - (1.33) and

Go + Ro + jf r(,t)2dx)1dt)2 <62 (1.34)

the initial-value problem (1.1), (1.2), (1.3), (1.26) has a unique solution 0 > 0 with

9, Ox, Ot, , Oz , Ot, Ott, Oxx, Oxxt, Oxtti Ott e C([0, oo); L 2 (0, 1)), (1.35)

OIOt, , OxOt, Ott e L- ((O, oo); L 2(O, 1)) n Ln2((O, oc); L2(O, 1)), (1.36)

and

0 E L' ((0, o*); L 2(0, 1)). (1.37)

Furthermore, as t --+ oo, 0(.,t) converges to a constant 0** > 0 uniformly on [0, 1] and

0=(.,t), O,(.,t) - 0 uniformly on [0,1]. (1.38)

Remark 1.4: The value of 0** can be determined from equation (1.1) as follows.

If the assumptions of Theorem 1.2 hold and 0 is a solution of(1.1), (1.2), (1.3), (1.26) then

integrating (1.1) over [0, 1] x [0, t], t > 0, and passing to the limit as t -- oo yields

)= J (0o(x))dx + J r(x, t)dxdt. (1.39)
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By (1.6) i is strictly monotone and hence there is a unique solution 0** of (1.39).

Let us now consider the problem stated below in which the heat conductor occupies

the entire real line:

2 a'(s)F(Bt(x, s))ds) Ot(x, t)(i'(O(Xlt)) + e(x, t)2 -

+ l'(s)F"(' (x, s))R .(x, s)ds

2 a'(s)F'(,(x, s))[0.(x, t) - _.(x, t - s)]ds =r(x, t)

O(x, t) f0

x e R, t > 0,

O(Xt)=* XE,t <0, (1.41)

6(x,0) = 0o(X) xelR. (1.42)

We assume

Oo - 0"EH 3 (1R), (1.43)

r,,rt,r~t,rtt e([Qo, oo); L 2(IR)) nL 2((O, oo); L 2(IR)) nL'((O, oo); L2(IR)), (1.44)

r e C([O, oo); L (]R)) n L'((O, oo); L2 (IR)) n L'((O, co); L 2(]R)), (1.45)

r(., 0) e H 2(IR), rttt e L 2 ((0, oo); L 2(IR)). (1.46)

Note that (1.45) implies r e L 2((0, oo); L2 (IR)). We define

E :- (Oo(X) - 0-]2 + 01(X) 2 + o1'(X) 2 )dx (1.47)

and

0sup (r2 + r) r2(x,0)dx + (sup Ir(x,t)) 2

t>O 0 -oo xdR
t>O (1.48)

+ (r + rt + r~t)(x, t)dxdt + (j( r(x, t)2dx) dt)2.

15
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Theorem 1.3: If (1.5) - (1.11) hold, then there is a constant 6 > 0 such that when 0o and

r satisfy (1.43) - (1.46) and

01 + R1 < 62, (1.49)

the initial-value problem (1.40), (1.41), (1.42) has a unique solution 0 > 0 with

9 - O*, Ox, t, Ozx, Ozt, Ott, Oxxz, Ozxt, 9 tt, Ottt e C([0, oo); L 2 (JR)), (1.50)

OX, Ot, Ox., Oxt, Ott e L'((O, o); L 2 (IR)) n L 2((0, co); L 2 (IR)), (1.51)

and

0 - 0* e L ' ((0, oo); L 2 (JR)). (1.52)

In addition, as t -+ o,

0(., t) -- 9 0* uniformly on IR (1.53)

and

o9(.,t), 9t(.,t) --+ 0 uniformly on JR and in L2(IR). (1.54)

Remark 1.5: A detailed proof of Theorem 1.1 is given in Section 3. With some minor

modifications the argument used to establish Theorem 1.1 can be applied to prove Theorems

1.2 and 1.3; these modifications are discussed in Section 3.

Remark 1.6: Assumption (1.11) is not the weakest possible to obtain the global estimates

of Section S. However, in order to establish local existence the replacement of (1.11) with

a weaker assumption would necessitate a much more sophisticated argument than the one

used in Chapter III of 1].
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The results established here can be modified and extended, as is illustrated below.

(i) Weak Solutions: Using a density argument one can show that under weaker assump-

tions on the data, our initial-value problems have a unique, globally defined, weak

solution. More precisely, for instance in Theorem 1.1, if we replace (1.12) - (1.18)

with

0o H 2(O,1), (1.55)

r~rt eC([O, oo); L 2(07 1)) n L2((O, oo); L2(O, 1)) n L'((O, oo); L2(O, 1)), (1.56)

r eSL ((0, 1) x (0, oo)), r(., 0) eH1 (0, 1), r,, eL2((O, oo); L2(0,1)), (1.57)

and

0o(O) =Oo(1) =9*, r(0,0) = r(1,0) =0, (1.58)

then the result of Theorem 1.1 is true with (1.22) replaced with

0, OX 0O, 0.., Oz,, Ott C([0, oo); L2(0,1)). (1.59)

(ii) Nonequilibrium History: Results analogous to Theorems 1.1, 1.2, and 1.3 can be

obtained if a more general history is prescribed. For example, a result similar to

Theorem 1.1 can be established if (1.2) is replaced by

0(x,t) = V(x,t) X f [0,1], t < 0, (1.60)

where W : [0, 1] x (-oo, 0] -+ (0, oo) satisfies

pvz, P zx, P pz, pzzz, .. t, pjji e C((-oo, 0]; L 2(0, 1))
(1.61)nl L2((_00, 0); L 2(O, 1)) n L'((-oo, 0); L 2(07 '))1

I00
a'(s)F'(c°(., s))ds r H 3(Ol), (1.62)
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and the compatibility conditions (1.16) - (1.18) are modified accordingly. In addition,

the quantity

sup ( + so' + p't)(x,t)dx

0  r1

+] (so V + . + Wot)(x,t)dxdt (1.63)

+ j j a'(s) " .F'( 30(x, s))ds )2 dx0 a42 Z0

must be sufficiently small, i.e. condition (1.21) is to be replaced with

(0 + j +R0 < 62. (1.64)

In Section 3 we discuss modifications needed in order to adapt the proof of Theorem

1.1 to this case. We note that for the analogue of Theorem 1.2, if we assume that

X(0,t) = Wp(1,t) = 0 t < 0 (1.65)

then, following the procedure discussed in Remark 1.3, we can show that (1.26) is

equivalent to (1.27).

(iii) General Integral Models: These results can be extended to the case when the constitu-

tive equations (0.8) are considered. In these equations the dependence on the summed

history of 9 is nontrivial; hence a term involving O(x, t) appears in the analogue of

(1.1). In the corresponding linearized equation the coefficient of 8(x, t) is

E j := oE 3 (S,,* 0*S,0)ds; (1.66)

one can show that compatibility with thermodynamics implies that E* is nonnegative

and hence the methods we use here can be adopted to produce analogous results to

18



those stated in Theorems 1.1, 1.2, and 1.3. The precise statement of the technical

assumptions required would be very complicated and not very illuminating, e.g. the

mapping

- Q,4 (S, 9*, 9*s, 0) (1.67)

would have to be such that our assumptions on

s - a'(s)F"(O) (1.68)

would hold. We will not discuss this case in further detail.
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2. Preliminaries

We begin by stating a local existence result for (1.1), (1.2), (1.3), (1.4). We first note

that equation (1.1) is hyperbolic near equilibrium, but may lose its evolutionary character

at states sufficiently far from equilibrium. In order to ensure that (1.1), (1.2), (1.3), (1.4)

is well posed we assume that 9o is close to equilibrium in the sense described below. We

choose e E (0, 0*) sufficiently small so that there are constants e*, q* > 0 with the following

property:

(w (Xt)) + 2  a'(s)F(tDv(x,s))ds > e Vx e(0O, 1,t E[0,TI, (2.1)'(( t) +W(X, t)2

and

- a'()F"( (xs))ds > q* VxE[0,1,'E[O,TI, (2.2)

for every T > 0 and every weL'((-oo,T); L(0, 1)) satisfying

jw(x,t) -o*j, jw.(x,t) <_ Vxe[0,1],te(-co,T]. (2.3)

Such a choice is possible by virtue of our assumptions on a and F. (Indeed, the left-hand

sides of (2.1) and (2.2) are strictly positive when w(x,t) = 0. A simple perturbation

about w = 0" guarantees the existence of a suitable e. In fact, we may take e* = I(0*)

and q* = a(0)F"(0).) We assume that 00 satisfies

18(X) - 0*1, IO(X)l _< 7 Vx C[0, 1], (2.4)

for some r7 c(0, e).

We can now state the following lemma.
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Lemma 2.1: Assume that (1.5) - (1.18) and (2.4) are satisfied. Then the initial-value

problem (1.1), (1.2), (1.3), (1.4) has a unique solution 0 > 0, defined on a maximal time

interval [0, To), To > 0, with

8, zx, O, 8z, 9 xt, Ott, 8 ,xzt, 8 xtt, Ot E C([O, To); L 2 (0, 1)) (2.5)

and

IO(x,t)-O*l, lOx(x,t)I < c Vxe[0,1],te[0,To). (2.6)

Moreover, if

sup 1(x,t)- 9*1, sup 19(xt)I < C (2.7)z,o1] ze[o,1]
t4[O,To) t[O,To)

and

sup ( + o2 + o2 + o2X + 02t + 0 + + o + + o + + o,,+ 02 )(x, t)dx < oo (2.8)

then To = oo.

A result analogous to Lemma 2.1 can be established if we replace (1.4) by (1.26) (i.e.

if instead of Dirichlet boundary conditions we consider Neumann boundary conditions)

and (1.15) - (1.18) with (1.29) - (1.33). Similarly to (1.1), (1.2), (1.3), (1.4), the initial-

value problem (1.1), (1.2), (1.3), (1.26) has a unique solution 0 defined on a maximal time

interval [0, T0 ), To > 0 satisfying (2.5) and (2.6). One can also obtain a corresponding

result for the case when the heat conductor occupies the entire real line; the assumptions

required in this case would be the analogues on IR of the assumptions stated above.
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The proof of Lemma 2.1 is given in Chapter III of [1 3 so we omit the details. It is

interesting to note that although compatibility of the constitutive relations (0.19), (0.22)

with thermodynamics determines the form of equation (1.1) it plays no further role in the

proof of Lemma 2.1. However, a bootstrapping argument, in which the thermodynamical

restrictions play an essential part, can be applied to strengthen the result described in

Lemma 2.1. More precisely, one can show that under the assumptions of Lemma 2.1, if 9

satisfies (1.1), (1.2), (1.3), (1.4) on a maximal time interval [0,T 0 ),T0 > 0 (and hence 0

satisfies the entropy inequality (0.2)), then a bound on the L""([O, To); L 2 (0, 1)) norms of 9

and its derivatives through order two implies that there is a bound on the aforementioned

norms of third order derivatives of 9. Hence, one can establish the following lemma.

Lemma 2.2: Suppose that the assumptions of Lemma 2.1 hold and that 0 is a solution of

(1.1), (1.2), (1.3), (1.4) on a maximal time interval [0, To), To > 0. If 9 satisfies (2.7) and

sup f(9 +9o +0 2 +0 +02 + 02 )(x, t)dx < 0, (2.9)
te[o,To)0

then To = oo.

3 Assumption (1.15)2 of Chapter III of [1] does not suffice to ensure that
Ot(.,0 + ) cH 2(0, 1). One needs to make the additional assumption thatI00oa'(s)F'(( ,(-, s))ds c H3(O, 1),

where W : [0, 11 x (-oo, 01 -+ (0, oo) is a prescribed general history, i.e.

0(x,t) = A(x,t) xe[0,1],t <0.

However, the arguments used to prove Theorem 1.1 of Chapter III of [1] remain valid.
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Remark 2.1: If 9 is a solution of (1.1), (1.2), (1.3), (1.4) then 9 satisfies the entropy

inequality (0.2), where the entropy and the heat flux are given by (0.19)2 and (0.19)3, i.e.

0 1 00fp(~(~\\a

S(xt) a'(s)F'( t(x, s))ds) < (-ik'(9(x t))
lj a'(s)F((, s))ds) r(x,t) (2.10)

(X, t)2 1O(x,t)

Recall that

6(v) := k(v) - vik'(v) ViV > 0, (2.11)

hence (1.5) implies
6" ,C(o, 0). (2.12)

Before proving Lemma 2.2 we introduce the following definition. For T > 0 and

0 < h < T, we define the forward difference operator At (with respect to the time

variable) by

(Ahw)(x,t):=w(x,t+h)-w(x,t) Vxe[O, 1],te[O,T-hj (2.13)

for every we C([0, T]; L2 (0, 1)).

Proof of Lemma 2.2: Let 0 be a solution of (1.1), (1.2), (1.3), (1.4) on a maximal time

interval [0, To), To > 0, such that (2.7) holds. Our aim is to show that if To < o: then

sup ( o2 + o2 + + o + 02t + 02,)(x,t)dx = oo. (2.14)
t([O,T0oX t X X t

For this purpose it is convenient to introduce the quantities

7 2(t):= suP (92 +o + o+ 02t +O92)(x,s)dx te[0,To), (2.15)
e[o't]i2
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I 2

-y t):-SUP (o1 + o1 + 02 + 02. + 02,+ o2, + o2XX + 02,
7 so,t] 

(2.16)
+ot ,, )(x, s)dx t e[0, To),

e j (0o(X) 2 + 09,(X) 2 + 01'(X) 2 + o;"(X?)aX, (2.17)

and
R: u 2 +rr 2 2 2

:fsu (r + rX + r, 2 rt,,)(x, t)ax + 2~ (x,o0)ax

Jo 1(2.18)

+ j (r + rz +r r+ r + r~t + r tt)(x, t)dxdt.

In the following calculations we make use of the inequalities

N N
( Ai )2 < N A? A1,,..., AN 6 IR, (2.19)

i---1 i---1

A 2

IABI < A2 + AB 2 A,BeIR,A > 0, (2.20)

and

11A * BIILP((O,T);L 2 (O,1)) <  IIAIL'(O,o)IIBI[LP((O,T);L2(o,1)) (2.21)

for every T > 0,A eL(0,oo), and BeLP((0,T);L'(0, 1)), where 1 < p < o and A * B

denotes the convolution of A with B. We use r to denote a (possible large) positive generic

constant which is independent of 00, r, and To.

We first differentiate equation (1.1) twice with respect to t and then apply the forward

difference operator Ah to the resulting expression. We multiply the new equation by Ah~tt

and integrate over [0, 1] x [0,t],tE (0, To). After several integrations by parts, we divide

both sides by h2 and let h 1 0 to obtain the identity
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ji ((Ot)+ 2 j0 a'.) (x, s)) ds)92 t (x, t)dx

Z' . Z j a'(s)F"( t(X, ))ds92t(X, t)dx

- 1 ~a'(z)F'(6.(x, z))dz)O9 t(x, s)dxds

2 1o j '( 0 ())(x, O)dx + a(O)F"(O) I 0 2t(x O)dx

+ j~(~(~, ) + ~ j a'(z)F(g.(x, z))dz) ~(x, s)dxds

- ftfl f a'(z)F,(-(X, z))dz 92ttjX, s)dxds

+ it fl ,3 (r(x, s)

6(X, s) f a'zF(~x , z))9-(x, 8 - z)dz)Ottt(x, s)dxds

10 iig5 G (x,.).-'(9 (x, s)) (.2

+ J 0 a'(z)F(#.(x, z))dz)Ott(x, s)dxds (-2
6(X, S)2 f

3 f t f a(Ott(X, s)1-(9'(0(x, s))

+ 2 0 0)2  a'(z)F(#.(x, z))dz))Ottt(x, s)dxds

lo fo j &,S a'(z)F"(j.'(X, z))9.,,(x, s - z)dz9ttt(x, s)dxds

+~ a jf ja()Ff"(9-(x, z))#.'(x, z)O.,(x, s -z)dzttt(x, s)dxds

f j j 1O(x, s)~ f a'(z)F"'(9xs(x, z))Bx. (x, z)dz6ttt(x, s)dxds

2 2f O6t (X, 8)- jo a'(z)F ...(6(x, z))#".(x, z)dz9ttt(x, s)dxds

+ j ] , O(X, s) ~(G 2  a(z)F'(9k(x, z))dz)Ottu(x, .s)dxds
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-
t j 02 j0 a'(z)F"(6(x, z))dz9,,(x, s)Ottt(x, s)dxdst0 10 O2 10

Here Otu(-,0) and Ot,.,O) are determined from equation (1.1). Making use of (2.1),

(2.2), (2.10) (to estimate the first term on the right-hand side of (2.22)), (2.19), (2.20),

(2.21), and the Sobolev embedding theorem one can show that

(02t + 2 )(x, t)dx r{± + -7(t) + 7 (t)

[1 + R-L + (1 + t)( (.12.3

+-y 2 (t72 ) jj Xt + W + + )(x, s)dxds}

Vtf[0,To).

We differentiate (1.1) twice with respect to t, square the resulting expression, and then

integrate over (0, 1J to obtain the inequality

Sfa'(s)F" (x,t f s))ads)20 F (x)t(X))t)dx

+ 5  j,(s)F(( j F,(,))d(())sd)II < (-j-3 (a(o(X, 0) o(Xt)

+ 5 oX X a (F ,( t (x, s)) ds)2 dx

f5 9 (xtdx: ER y(t, ) + 1 +3

J o 

( 2 .2 4 )
+ 5 ('t a'(s)F"(j*t(X's))0z.(x,t -s)ds) dx

1 0 t

+ 5 r 2 t) + t O +(x, t )dx V t .

2One can show that (2.24) implies

J o2 + _t+3(t)

0 tx to f t2t (2-25)
+(I + '(t) + -Y(t)) (02_,,+O02 ) (x,t)dx} V t e[0, To).
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We now differentiate (1.1) once with respect to t and then once with respect to x. We

square the result and integrate over (0, 11 to get

00 j~~(((~t)-Oxt a'(s)F(9j'(xx)s))ds)) 2 dxt~d

0'/
+ 511(O(",w)d)IO ) (s)j(,,s))x (2.26)

o9Xt 2~x t ,)FO = )) )

+ 5 j (j't)9 a,(s)F)(jxt(x,s))ds)2dxfot T (2.26)

+ 5 f(- j a'(s)FjF"(it(x, s))9==(x,t- s)ds)2 dx

+5 T dx t

r2t(X, t)dx Vt e [0, T0 ).
0

In order to obtain bounds on the third and fourth terms on the right-hand side of (2.26)

we make use of the following observation: we have

g(x, t) = g(x, 0) + j gt( x, s)ds Vx e [0, 11, t [0, TJ (2.27)

and hence

g 2(x, t)dx < 2 jg 2(x, O)dx + 2t g2(x, s)dxds Vte[0, T] (2.28)

for every T > 0 and every smooth function g : [0, 1] x [0, T] - IR. Thus we arrive at the

inequality

j 2 -yx t~x ~R+ (t) + _yk+ 3 (t)

+ (1 + 72 (t) + 72(t)) (02.t + 92tt)(x,t)dx (2.29)

+ t(l 7 2 (t) + +2 (t)) j 2 j 9(x,s)dxds} Vte[O, To).

We do not give further details of the calculations involved to obtain (2.23), (2.25), (2.29)

since they are similar in spirit to calculations described in Section 3 below.
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Combining (2.23), (2.25), and (2.29) it is easy to show that there is a constant N =

N(k) > 2 such that

(02. + 2 + 2+ 02 t)(x,t)dx < {E + E 2 + R + R 2 + , 2 (To)

72N(To) + [1 + R1 + R + (1 + To)(7 (To) + -t2N(To))](j (2.30)

+ O X t + tt + t)(x,s)dxds} Vt eO,T0 ),

where P is a fixed positive constant independent of r, 00, and To. Thus Gronwall's inequality

implies

7 3(To) _ IP[ + e2 + R + R 2 + -y2 (To) + -y'(To)]exp{f To[1 + R2

(2.31)

+ R+ (1 + 2T)y(T0) +2'(T))]}. 2

According to Lemma 2.1, if To < 00 then 73 (To) = oo and hence (2.31) leads to the desired

conclusion. I

In the analysis of (1.1), (1.2), (1.3), (1.4) we make essential use of several properties of

strongly positive definite kernels. A function be L'o [0, oo) is said to be positive definite

if f0tj W(S) j b(s - z)w(z)dzds > 0 Vt > 0, (2.32)

for every w e C[O, oo). The kernel b is said to be strongly positive definite if there is a

constant c > 0 such that the mapping t '-4 b(t) - ce- t is positive definite.

This definition is generally not easy to check directly. One can show that if b e L' (0, 00),

then b is strongly positive definite if and only if there is a constant c > 0 such that

ReC[b](iw)> w2 Vw ]PR, (2.33)

where C[.) denotes the Laplace transform. It is useful to know that if b e C2 [0, oo) and

(-1)b(')(t) > 0 Vt > 0, j=0,1,2, '4 0, (2.34)
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then b is strongly positive definite. With sufficient regularity, one can obtain information

concerning the pointwise behaviour near zero of strongly positive definite functions. In

particular, (1.10)1,2 imply

a(0) > 0, a'(0) < 0. (2.35)

This follows easily by expressing a(0) and a'(0) in terms of the Laplace transform of a (cf.,

e.g. Section 2 of [71). Condition (2.35) plays an important role in the analysis. See, for

example, [11 for more information on strongly positive definite kernels.

In order to obtain certain estimates, we need to solve (1.1) for 0 .. For this purpose

we recall that for each y e Lo 0 , oo), the equation

a(o)w(t) + j a'(t - s)w(s)ds = y(t) t > 0 (2.36)

has a unique solution w E L'0C[0, o); this solution is given by

w(t) = -1(y(t) + m(t - s)y(s)ds) t > 0, (2.37)

where m, the resolvent kernel of a', is defined to be the unique solution of the resolvent

equation

a(O)m(t) + j m(t - s)a'(s)ds = -a'(t) t > 0. (2.38)

Using a Paley-Wiener type argument, (1.10)1,2, and properties of strongly positive kernels,

we establish the following lemma.

Lemma 2.3: Assume that (1.10)1,2 is satisfied. Then the solution m to (2.38) satisfies

m' e L' (0, oo).
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Remark 2.2: Under assumptions (1.10)1,2 and (1.11), one can also show that

he £[a](0) + M(t) Vt > 0, (2.39)

where Me L' (0, oo).

Proof of Lemma 2.3: Define II { e C : Re > 0}. Formally taking Laplace transforms

in (2.38) we find that

-L[a']( ] V C ell. (2.40)
C[m]( ) = a(0) +t2[a']( )

Recall that (1.10)1,2 imply (2.35). Thus, by (2.38) we have

= a'(0) (±£a'](I) 1 lI1. (2.41)

After a simple computation we obtain

£[m']( )- aL + a(0) 6 rg. (2.42)

By (2.33) and the maximum principle for analytic functions L2[a] does not vanish on 11.

Hence, by (2.35), and (2.33), £[m'] is locally analytic on H in the sense of Definition 2.1

of (9]. Observe that for near infinity we have

/[m']( ) = -a(0)(GL[a'E( ) - a'(0)) + a'(0)L[a']( )
a(0)(a(0) + C[a']( )) (2.43)

-a(O),C[a"]( ) + a'(0)[C(a']( )

a(0)(a(0) + L[a'](c ))

Thus C[m'] is locally analytic at infinity and £[m'](oo) = 0. Therefore, by Proposition 2.3

of [9] m' e L'(0, oo) and the proof is complete. |
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Before describing our next result we introduce the following notation (which is also

used in the next section). For be L'0 C[0, oo) we define

Q(w, t, b) j w(x, s) b(s - z)w(x, z)dzdxds Vt e [0, TI, (2.44)

for every T > 0 and every weC([O,T]; L2(0,1)). The result below was motivated by

Lemma 2 of [8].

Lemma 2.4: Assume that (1.10)1,2 hold. Then there exists a constant L > 0 such that

fOw (X t~d < L( w 2 (X, 0)dx + L ft fl w 2 (X x,
1 (2.45)

+LliminfT,-Q(Ahw, t,a) Vte[0,T],
hi0 o

for every T > 0 and every we C([O, T]; L2 (0, 1)) and consequently, by Lemma 2.5 of [7],

there is a constant L* > 0 such that

w2(x, t)dx < L" w2 (x, O)dx + L*Q(w, t, a)10 1 (2.46)

+ L* liminf TQ(Ahw,t,a) Vt e[0, T],

for every T > 0 and every we C([O, T]; L 2 (0, 1)).

For the proof of Lemma 2.4 it is convenient to introduce the following notation

e(t) := e-t Vte[0, oc). (2.47)

In addition, for T > 0 and 0 < h < T, we define the quantity

(Dhw)(x,t) := f Ahw(X,s)ds VtE[0,T- h], (2.48)

for every w e C([O, T]; L2 (0, 1)). We note that

it+h oh

(Dhw)(x, t) = j w(x, s)ds - j w(x,s)ds te[O,T- h]. (2.49)
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Proof of Lemma 2.4: We first observe that by (1.10)1,2 there exists a constant c > 0

such that

0 < Q(v,t,e) < cQ(v,t,a) Vte[0, T], (2.50)

for every T > 0 and every veC([O,T]; L2 (0,1)). Let T > 0,h e(0,T), and weC([O,T];

L2 (0, 1)) be given. Integration by parts (twice) leads to the following identity:

Q(Ahw,t,e) = - (Dhw)(X,t) 2 dx + j j(Dw)(X,s)2dxds

-j(Dhw)(X, t) je-()(DhW)(X, s)dsdx (2.51)

- I (Dhw)(xl s) j e-(')(Dhw)(X, z)dzdxds.

Dividing both sides of (2.51) by h2 and letting h J 0 we can show that lir -Q(Ahw, t, e)
h1o 2

exists and is given by

lira Q(Ahwt,e) [w(x, t) - w(x, O)] dx

+ fIt [l 1 w(x,s) - w(x,0)] 2dxds

J J (2.52)

f- [w(xt) - w(x,0)] e--(t-))[w(x's) - w(xO)]dsdx

- f j[w(xs) - w(x,O)] e-(S-Z)[w(xz) - w(x,'O)dzdxds

After some simple computations we obtain the following expression for the last two terms

on the right-hand side of (2.52)

0 10
i [w(x, t) - w(x, 0)) e-(t-)w(x, s) - w(x, 0)Idsdx

- w(x, t) e-(t-)w(x, s)dsdx + w(X, 0) e-(t-')w(x, s)dsdx (2.53)

-0 j w2 (X, 0)[1 - et'Idx + j0 w(x, t)tv(x, 0)[1 - e 1t]dx,
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f' j j w(x,s) -(IO w1x0 j ~[w(x, z) - w(x,0O)]dzdxds

-- Q(w, t' e) - j j w2(x, 0)drds + j 2 (X, 0) [1 - e t lIdx

+ 2 jf w(x, s)w(x, 0)dxds - jjw(x, s)w(x, 0)e-"dxds

- 1o Jo w(x, S)w(x, 0)e(t)dxd.5

Hence, (2.52) implies

Sjw(X, t)dx = .liQ(A 1w, t' P) + Q(w' t'e) - j j w(X, s)dxds

f- Jw 2 (X, 0)dX + J -,t (t--)w(x, s)dsdx +] w(x,t)w(x, O)e-tdx (2.55)

+ jo j w(x, .s)w(x, O)e--dxds.

To complete the proof we use the inequality (2.20); for A > 0

~1

A flJ 2 (X, t)dx +- fIJ(] e-It -)w(x, s)d~s)2 dx (2.56)

Af1 2 w(X, t) dX + f1  IW 2 (X, s)dxds,

11 1

w(x,t)w(x,0)e- t dxl : A W A f2 xtd + w2(x, ,)dx, (2.57)

and similarly

ifo f 'w(x, s)w(x, )e--dxdsl

< 1 2 w(X, s)dxds + 1 f -2s ds ] w2(X, 0)dx (2.58)

f w 2 (X,s)dxds+ If w2 (X,0) dX.

Hence, if A > 0 is chosen to be sufficiently small the desired conclusion followvs from (2.50).
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3. Proof of Theorem 1.1.

We choose e e (0, 6*) as in the first paragraph of Section 2. If (1.21) holds with 6 < 77/2,

for some 7 e (0, e), then the Sobolev embedding theorem implies

l0o(x) - Oi, 0' (x)l < < q7 Vx e [0, 1]. (3.1)

Therefore, by Lemmas 2.1 and 2.2, the initial-value problem (1.1), (1.2), (1.3), (1.4) has a

unique solution 0 > 0 that satisfies

0, 9x, Otj, , Ox, et, , Oxxt, Oxtt, Gtet E C([0, To); L'(0, 1)) (3.2)

and

10(x,t) -0*1, 10.(x,t)l < e Vx e[0, 1], t e[0, To) (3.3)

on a maximal time interval [0, TO), To > 0. Our aim is to show that if (1.21) holds for 6 > 0

sufficiently small, then

sup ([(xt)_0.)2 + 02(Xt)+ +2(Xt)+90X(X t)te[oTo) 0(3.4)

+ Xt(X, t) + O (x, t))dx < o

and

sup jO(x,t) -t*9, sup l09.(Xt) < e (3.5)
XIEfO,11 ze[O,1]
tf[OTo) te[0,To)

and hence To = oo (by Lemma 2.2). For this purpose it is convenient to introduce the

quantities

£(t): s[ ] ([O(,S) - *]2 + 02(X,S) + 02(X,S) + L (XS)

+ o2(X, S) + 02 (x, s))d(
X t( x , s ) d x( 3 .6 )

+j [(x, ) 02 (XS) + 0(XS) + 0 (XS)

+ (x, s) +2 (z, s))dxds t C [0, To)
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and
V(t) sup ([O(x,S) - e*1' + 0'(X,S) + 9(X,S)) 2

zd[O,1]
S[0,t] (3.7)

+ ( sup I(xs)l)2ds)2 t A[0, T0).

Equation (1.1) can be rewritten as follows

j*t
i(*)Ot(x, t) - F"(0) ] a(t - s)O,,(x, s)ds

- -'( (Xt))- '(O*))et(zt)- j ."(Xs)j a'(z)(F"(9t(x,z))

F"(0))dzds - 9( 2 
2t(x, t) jo a'(s)F(6t (x, s))ds(X) 0(3.8)

+ 2 (xt) a'(s)F'(9x'(x, s))ds
O(X, t) t) o

2 ( a'(s)F'(9 (x s))0z(xt - s)ds + r(x,t)

x e [0, 1], t e [O, To).

In the derivation of this equation from (1.1) we make use of (1.2) and (1.8). The second

terms on both sides of (3.8) are obtained through the following computation0 0
a'(s)F"(B'(x,s))Ogt(x,s)ds = j j a'(s)F"(9t(x,s)).T(x,z)dzds

f 0 
(3.9)

= O..()xz) a'(s)F"(9t(x,s))dsdz.

The aim of the computations that follow is to establish the inequality (3.40) below; to

do so we employ energy methods. We use two main types of estimates in this argument:

(i) estimates derived directly from energy integrals;

(ii) additional estimates obtained from equation (3.8) through the use of inverse Volterra

operators.

In our energy integrals, the left-hand side of (3.8) will lead to positive definite con-

tributions and the right-hand side will lead to terms that are small provided the solution
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is near equilibrium. We make essential use of Lemma 2.4 in the estimates of type (i); in

addition, in order to estimate the energy integral of highest order one must exploit com-

patibility of our constitutive relations (0.19), (0.22) with thermodynamics, i.e. we make

use of the fact that a solution of (1.1), (1.2), (1.3), (1.4) satisfies the entropy inequality

(0.2). (See Remark 2.1 for further details.) Lemma 2.3 plays an important role in the

estimates of type (ii). A reader who is unfamiliar with energy methods and seeks further

motivation for our computations may wish to look at the argument following (3.40) before

reading the derivation of (3.40).

In the numerous estimations that follow we make frequent use of the inequalities

(2.19), (2.20), and (2.21). We use F to denote a (possibly large) positive generic constant

which is independent of 00, r, and To.

To obtain our first energy integral we multiply equation (3.8) by (e- 0*) and integrate

over [0, 1] x [0, t], t E [0, To). After integration by parts we find that

1 i'(0*) [O(x, t) - 9*]2dx + F"(O)Q(e , t, a)

= 1 9 1 [(00(X)- 0-1dx

f0+ j [(x,s) -o9]{-(~I'(o(x s)) -'())d,)

- f 0.(Xy) a'(z)(F"(j._(x,z)) - F"(0))dzdy (3.10)

2 0))dWX S2Ot(x,s3) foa'(z)F(O(x, z))dz

+ 9(2 o9(X,S) j a'(z)F'('(x, z))dz

2 a'(z)F'(Oz.,z))O(x,s-z)dz+r(x,s)}dxds Vt [0,To).
O(Xs)3

36



We next differentiate (3.8) with respect to t:

e(B-)ett(x, t) - F"(O)a(O)0,,(x, t) - F"(0) jo a'(t - s)9..,(x, .s)ds

f (X, s)] a'(z)(F"(#.(x, z)) - F"(O))dzds

2 f t(,0 0 0 /(sF(.t (s)ds 2 00 (3.11)
-(X t 2  fa(xXt) +X 8(X,t)[I a'(s)F'(j' (x, s))ds

(t) j a'z) i~xs))9.(x,t - s)ds ±r(x,t)}

X f 0, 1, t C ATo).

Multiplying this equation by Ot and integrating over [0, 11 x [0, t], t E [0, To) we obtain

the following expression:

1 6(0) 02 (X,t)dX + F"(0)Q(9,,t, ta)

F"(0) I a(s)O"1 (x)O(x, s)dxds + 1 e(rB 0(,Od

+ f1 O(X, S) ,{-( '(9(X, s)) - 8I(9*))9t(x S)

- j 9(x, y) f a'(z)(F"(#.(x, z)) - F"(0))dzdy (3. 12)

- 2 00x s o a'(z)F(9-'(x, z))dz

(,2 Ot(x s f

+ 10XS)C a'(z) F'(i; (x, z))dz

2 a'(Z)F(9,(X, z))9.(X, s- z)dz +r(x, s)}dxds Vt e[0, To).
(X, -S-) J0

We note that according to equation (3.8) we have

Gt(X,0) - 1 O~)r(x, 0) X6[0,1]. (3.13)
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Differentiation of equation (3.11) with respect to t yields (after integrating several

terms by parts)

8'(o*)ottt(x, t) - F"(O)a(o)o,,t(x, t) - F"(o) j a'(t - s)O,,t(x, s)ds

= F"(O)a'(t)'o(x) + -{-( '(O(x,t)) 9'($*))t(xt)

(2 f a'(s)F'(,(x, s))O(x,t - s)ds + r(x, t)}

+ - t 0,,(x, t - s)a'(s)(F"(#t (x, s)) - F"(0))ds
Ot J0

+ 10" Ox(, s)]. a'(z)F"'(9'(x, z))O9(x, t - z)dzds}

x (X(xt)- a 0 a'(s)(F"((x, s)) - F"(O))ds

8 f t  [ 0 0 ,(rIit\
- OT(Xt)-- I 9 .(xs)at000 f- (3.14)

0 t) I a'(s)(F"(j.(x, s)) - F"(0))ds)

a2 2 ro
-Gt(Xt)-( a'(s)F(6t(X, s))ds)-( t G(X,t)2 J 0

-o,(X, t)a ( ,t)] ' a'(s)F(jt(x,s))ds)

-Gttt(Xs) 9(2 ,t)2 a'(s)F( t(x, s))ds
8ttx ) (t2 2

+ 9X, 92  2 0 a'(s)F'(9t(x,s))ds)t) ( , t) f
O~~,0 4 f a'(s)FP(6t(x, s))ds)

+Ott(x' t)o( t) I a'(s)F'(6t(x, s))ds x e [0, 1], t e [0, To).

In analogy with the previous calculation, we multiply (3.14) by Ott and integrate over

[0,11 x [0, t], t e [0, To). The resulting relation is
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-e9* [1' 9(x, t)dx + F"(O)Q(O.,;t, t, a)

-F"(O) jja'(s)9g(x)Ott(x, s)dxds - F"(0) ja(t)O~t(x,O0)0.t(x, t)dx

+- F"(O)a(O) 92 t (x, O)dx + F" (0) 1 a'(s)Oxt(x, O)9.,:(x, s)dxds

1 1029* j X 9 O)dX + f j f Ot(X, S) a2 -(a'(O(X, S)) _ 6(O*))Ot(X, S)

-2_ a'(z)F'(gx'(x, z))Ox (x, s - z)dz + r(x, s)}dxds
O(x, S) Jo

+ f, t 9(X, s) f Ox x(x, s - z) a'(z) (F s(x, z)) - F" (0)) dz

+ 0.j O(X, y) j a'(z)F"...(86(x, z))Ox(x, s - zdzyds

Ot LX j)X (,S a'(z) (F"(#'(x, z)) - F"(O))dzdxds

- /jOt(x, s)9X(x,S a)~ j O 2(X, y) 00 a'(z)F ...(9 (x, z))dzdydxds

± j92t(X, t) f a'(s)(F"(Ot (x, s)) - F"(O))dsdx

2 af ~(,s-f a'(z)(F"(6,'(x, z)) - F"(O))dzdxds

- f 9i~~)~9(~ )2j'() ( )F('xz))dz)dxd5

- ~ (x0t 2  9(X, ) a '() ( x 4))dsd
+ j f6~(x s( T(_) j a'zF (x, z)) dz) dx ds

+ tt (x a'(z)F '((x~ z)z

Oii (x, t s)9( a('(x, ) F'(9d x , )d ~

-jj 9(x, S)O.,( 9 (j s) a'(z) F'( #'(x , z)) dz) dxds te0,T)
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We note that (3.13) implies

0_t(x,0)= A ) 0,(X)Ot(x,0) + r,(x,0) xE[0,1] (3.16)
A W'()o())

and from (3.11) we have

9t(x, 0) = F"(o)a(O) ,(X) "(0o(x)) 92(X, 0)8,O1) 0( 0( ) (3.17)
2F"(0)a(0) 01 1

- 0(X)-'(O(X)) °(X) 2 + '(Oo()) 
x C 0) 1].

We add (3.10), (3.12), and (3.15) and make use of Lemma 2.4 to obtain a lower bound

on the left-hand side of the resulting identity. We then make some routine estimations to

derive the inequality

([O(X,t) - 9*]2 + O(x,t) + 02 (x,t) + 02t(x,t) + 92tx,t))dx

+~ ~~ ~ (o(,)ox )~ _{O+o~~/ +/gI/g (3.1s)))

±j 1t JO x (3.18)

+ rVR0E(t) + r{v(t) + Vk+2(t)}E(t)

Vt (O, To).

In order to give an indication of how (3.18) was derived we show detailed estimations

of certain typical terms of (3.10), (3.12), and (3.15) as follows. Many of the terms can be

estimated in a simple way, for instance

< sup j"(O(X(Os))9s(t , s)I f 1 t(x, s)Gt(x, s
sE[Oi]

t) L ( )d(3.19)< rv,(t) 1 o1tt(x, s)Ot(x, s)ldxds

< rv(t) f 0 j((X, S) + 02 (X, s))dxds

<rv(t)c(t) Vt e [0, To)
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or

IF"(O) ff a'(s)B(x)3tt(x,0s)dxds

< F"()( a'(s)2 O(x)2 dxds) It f (x, s)dxds)(.

Some of the terms must be rewritten carefully before they are estimated: e.g. the term

estimated in (3.25) below arises from

f 02 2 a'(z)F'(s=(xz))O8(xs- z)dz)dxds (3.21)

which appears on the right-hand side of (3.15). We first differentiate the integral appearing

in the integrand of (3.21) once with respect to s and then make the following change of

variable

/o a'(z)F'(6(x, z))Ot(x, s - z)dz
J, (3.22)

=fj a'(s - C)F'(9 (x, s - ())O(x, ()d(.

We next differentiate the right-hand side of (3.22) with respect to s and then repeat the

same change of variable to obtain the integral estimated in (3.25). We note that a similar

procedure is used when differentiating terms of the form

00

1 a'(z)F"'"((x, z))dz (3.23)

with respect to s; the change of variable in this case takes the form

a'(z)F"'(6'(x,z))dz = a'(s - ()F"'(#'(x, s - ())d(. (3.24)
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We now continue to show some typical calculations. The computations below are more

involved than those used in (3.19) and (3.20): we obtain a bound on a term appearing on

the right-hand side of (3.15)

Ot jj9( 9(x, s) j a'(z)F"(9.(x, z))O9,(x, s - z)O.,t(x, s - z)dzdxdsl

" r sup IOX(x,S)l jo j0 I9tt(x, _)Ij Ia'(z)I(F"(0)
afj0,t]

+ IF"(&.(x, z)) - F"(0)1) I6~t(x, s - z)ldzdxds

" rv(t) Jo Jo I Ott(x, s)( j ' Ia'(z) I(F" (0) + K(I 9(x, z) I

+ I0 (X, Z)I k))Io~t(X,s z)Idzdxds

r v(t) jo1 j ~9t(x, 8)j 1 fIa'(z))(F"(0) + K[v/z(f ~x, 2)~

±~ ~f (x~)~ 2 ,)d)I)IO..,(x, s - z)Idzdxds (.5

~t 14 fi 1 a

~ Pv~t)(] 1~92 (x, s) dxds) 4 ( -2 ( ]I()[1+vtv
+ V k (t)(V/-)kII9~t(X, S - z)ldz)2 dxds)-2

z tvtv'( j (x, s) dxds) (f Ia'(z) Idz + v(t) j Ia'(z) v'zdz

+ V k (t)fj Ia'(z)I(vrz)kdz)

rf fv(t) + V2 (t) + Vk+l(t)}.E(t) 5 r{v(t) + Vk+ 1(t)} E(t)

Vt C [0, To)

and from (3.10) we estimate the following term
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I [0(x, s) - &*j .. (x,y) a'(z)(F"(9'(x,z)) - F"(0))dzdydxdsj

! t 00
< K(v(t) + Vk(t)) 1 i5 (Xs) -* 1](0X(X,)] la'()I((3

+ ( VI'-)k )dzdydxds

:5 K(v(t) + Vk(t))Vr( ( 10X(,.y)l 001a, (Vz_(3-26

+ (../ )k)dzdy)2dxds)

< (v(t) + Vk(t))E(t) ja'(z)l(v'z + (,/) k)dzds

<r{v(t) + vk(t)}E(t) Vte [O, T).

The rest of the terms on the right-hand side of (3.10), (3.12), and (3.15), except for the

last term in (3.15), are handled in a similar fashion to (3.19), (3.20), (3.25), and (3.26).

The last term on the right-hand side of (3.15) is first estimated from above, making use

of compatibility with thermodynamics, i.e. we utilize the entropy inequality (0.2) in the

estimation below: by (2.10) we have

-1f t0 2  -z 0(, ( a'(z)F'(/(x, z))dz)dxds
Ox1 0 1X oo 1

- :-7.laxas VtE[0,To),

where " C(0, oo) (see Remark 2.1). Thus, it can be shown that
tt(xs ) 1 a'(z)F'(j-'(x'z))dz)dxds

0 0 X, O(x, S) J o z (3.28)

< r{v(t) + Vk+1(t)}g(t) + FrVi/ (t) Vtc [o, To).

Additonal estimates are derived directly from equation (3.8) in the following manner.

In order to obtain a temporal-L 2 estimate for Ot we first multiply (3.8) by 0,. and integrate
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the resulting identity over [0, 1] x [0, t], t e [0, To). We arrive at the relation

1 '(r") 0(X,t)dX + F(0)QO~ZXt, a)

1.81I(9*) ' o (x)' dx

+ j .- (X, S){((O(X) S)) - 8I(o*))ot(X, )

+ 1 (Xy) j a'(z)(F"((x, z)) - F"(0))dzdy (3.29)

2 0
+ , , ) a'(z)F(Oj(x,z))dz

2 9(x, s) j a'(z)F'(gO(x, z))dz
O(x,s)

+ a'(z)F'(9.(x, z))Gx(x, s - z)dz - r(x, s)}dxds

Vtf[0,TO).

This relation leads to the inequality

Q(O,, t, a) :_ reo + r /-o V-7) + r{v(t) + vk(t)}C(t)
(3.30)

Vtf [0, To).

We now square (3.8) and integrate over [0,1] x [0,t], t e[0,To). Using (1.10), Lemma 4.2

of [12], and (3.30) we arrive at the estimate

joj oO(x, s)dxds < r{e ° + R°} + r r-o°° /  (3.31)

+ r{(t)+ ~2 k(t)}C(t) Vt E [0,To).

Equation (3.11) can be written as

'(o*)Ott(x, t) - F"(O)a(0)O (x,t)- F"(0) fa'(t - s)..(x,s)ds = G(x,t) (3.32)

x [0,1], t E [0, To),

where G(x, t) denotes the right-hand side of (3.8).
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Solving for 0_, in terms of Ott and Gt (see (2.36) and (2.37)) we get

F- '(0) a(0) 0.,,(x, t)

= Gt(x, t) - '(O*)Ott(x, t) + j m(t - s)[Gt(x, s) - 6'(O*)Ott(, s)]ds (3.33)

x [, ', te[, To),

where m is the resolvent of a' (see (2.38)). We note that by (3.8) G(x, 0) - 6(O*)Ot(x, 0) = 0

for all x c [0, 11, and by (2.38) m(0) = -a'(O)/a(O). Thus, after integrating the last term

on the right-hand side of (3.33) by parts we arrive at the expression

- F"(0)a(0)O,.(x, t)

=G,(x, t) - a'(o*)o,,(x, t) - aO[G(x, t) - '(9*)O(x, t)] (334)
a(o)

+ m'(t - s)[G(x, s) - 6'(O*)O,(x, s)]ds x ([0, 11, t e[0, T0 ).

We now square (3.34) and integrate over [0,1]. By (3.18) and Lemma 2.3 we have

I o2
(5(3.35)

+ rvR0E(t) + r{v(t) ± + 2 (t)}g(t) V [0,T0).

To obtain a temporal-L 2 bound on Ott we multiply (3.34) by Ott and integrate over

[0,1] x [0,t], te[O, To). We note that

j0 j0 Btt(x, s)O,,,.(x, s)dxds t - o j 0j_~,(x, s)O.,t(x, s)dxds

- 109(xt)Oxt(xt)dx + '(x)Oxt(x,O)dx (3.36)

+ zjt(x, s)dxds te[1,T 0 ).

Thus we have

lot z 9Wxs)dxds < rf e0 + Ro I + rf{ + v/- 7 I )(3.37)

+ rV'oE(t) + ,v(t) + k+2(t)}.(t) Vt c [0, To).
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(Here, we make crucial use of the inequality (2.20).) We now square (3.34) and inte-

grate over [0,1] x [0,t], t e [0,To) using (3.18), (3.31), (3.37), and Lemma 2.3 to obtain the

following estimate

jf J0, (x, s)dxds < J7{®9o + Ro} + r{VE);+ V~o} VE~ (3.38)

+ rV'- OE(t) + PIV(t) + V2k±2(t)}E(t) Vt [0, T,).

Observe that by Poincar6's inequality there is a constant c > 0 such that

j [j(X, s) - 9-*2dxds < C j 2 (x, s)dxds Vte[0,To). (3.39)

It follows from (3.18), (3.31), (3.35), (3.37), (3.38), and (3.39) that

E(t) < r{o + Ro} + r{ Veo + v'Ro} v/-W + rV/-o(t)
(3.40)

+ F{v(t) + v 2 k+ 2 (t)}S(t) Vt e [0, T0 ).

Using (2.20), (3.40) yields

E(t) '{eo + Ro} + PV/oE(t) + rf{v(t) + V~k+2 (t)}S(t)

(3.41)

Vt e [0,T),

where r denotes a fixed positive constant which is independent of 90, r, and To. We choose

T, 6 > 0 such that

<Ev C2 (V )2k+2} r62 < 1 1 r6 (3.42)

and

6 < 277 (3.43)

for some ?I e (0, e).
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Suppose now that (1.21) holds for the above choice of 6. By the Sobolev embedding

theorem

v(t) < V5Nit Vt e[0, To). (3.44)

Thus, it follows from (3.41) that for any t e [0, T0 ) with £(t) < we actually have £(t) _
1- 1
-E. Hence, by continuity, if E(O) < 1T then
2-2

1-
£(t) < -£ Vte[0, To). (3.45)

It is possible to choose a smaller 6 > 0 (if necessary) so that (1.21) implies £(0) < JE.

Consequently, for 6 > 0 small enough, (3.45) holds; moreover, by the Sobolev embedding

theorem

sup 1O(x,t) - 9", sup IBo(x,t)l < N/: < E. (3.46)
xef[0,lj x[0,11
tf[0,To) c[O,To)

Therefore, by Lemma 2.2 we have To = co. In addition, (1.23) is an immediate conse-

quence of (3.45). Moreover, (1.24) and (1.25) follow from (1.23) by standard embedding

inequalities, e.g. from (1.23) we have

0- 0*e LO((0, co); L 2 (0, 1)) (3.47)

and

0.,, L'((O, oo); L 2(07 1)). (3.48)

We note that (3.48) implies

0,(.,t) -- 0 in L 2 (0,1) as t --*+ . (3.49)

Observe that
jx

[O(X, t) - _ *]2 = 210 [O( , t) - *]O (, t)d < 2 jO( , t) - 0 1 10 ( ,t)d (350)

< 2( [O(d- O'I2d)i( Ox( ,t)d )' xe[O,1l,t >0.

47



Hence, by (3.47) and (3.49)

0(.,t) -+* uniformly on [0,1] as t -- oo. (3.51)

This completes the proof of Theorem 1.1. I

The proofs of Theorem 1.2 and 1.3 are very similar to the proof above. In both

cases, however, since we cannot use Poincar's inequality, we do not obtain a temporal-L2

estimate for 0 - 0* and hence before we proceed with the calculations we divide equations

(1.1) and (1.40) by '(6(x,t)). For the same reason, in Theorem 1.2, for example, we

require that (1.29) hold in order to obtain the following estimate:

it 1 1 s) - 6*]r(x, s)dxdsI

0 '7(0(x, s)) O(

jV //1 -1 9)2 r(s)dx)2
Jo 1 (3.52)

:5 r supj [o(x) r s*~x~fj 2 )d)

, 17 -(f)r( t)dx) 1dt Vt e 0, To);

the other terms with which one must be careful can be handled by integration by parts,

e.g.
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// 1 [8(x, s) - 0*1 a'(z)(F"(,(x,

- F"(0))6j.(x, z)dzdxdsl

j'(x, S) - *.! o /a(z(F"(.(x,z))

- f"(0))0.(x,s - z)dzdxdsl

ft 1 "(9(x, S)) [O(X, s) - 0*1 (3.53)
'a Jo 6,(9(X, S))2

+ ( ) (x, s) a(z)(F"(x(x, z))e ,((, S))

- F"(0))O,(x,s - z)dzdxdsl

< r(v(t) + Vk+l(t))E(t)

t e[0,TO).

The argument to show that 0(., t) --+ 9** uniformly on [0, 1] as t -- oo for Theorem 1.2,

is essentially the same as the argument used to establish an analogous result in Section

3 of [4]: One first observes that standard embedding inequalities yield (1.38) as well as

boundedness of 0 on [0, 1] x [0, oo). Hence, every sequence of times tending to infinity has

a subsequence on which 0 converges uniformly to a constant, namely 0**.

Theorems 1.2 and 1.3 can be proved using an argument in the same spirit as in [12], i.e.

instead of taking temporal derivatives of the equation and multiplying by corresponding

time derivatives of 0, one can take spatial derivatives of the equation and multiply by

appropriate x derivatives of 0. This cannot be done for Theorem 1.1 since we have a

term involving Or(x, t) on the right-hand side of (1.1) which would lead to uncontrollable

boundary terms.

In the case of nonequilibrium history the argument is essentially the same. The main
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modification needed arises when we want to make use of an inequality of the form (2.21);

we then extend a to IR by zero. To give an indication of where such a modification is

needed we consider the analogue of the term treated in (3.26):

j [O(xs) - 0*] j X (x'Y) -a'(z)(F"(0:(x, z)) - F"(O))dzdydxdsl

t 1(6(x, s) - 0*1] 0,(x, y) 10 a'(z)(F"(9.(z, z))

- F"(o))dzdydxdsl (3.54)

+ I [o(X, ) - 0] O8x (X) a'(z)(F"(#(xz))

- F"(0))dzdydxdsI.

The second term on the right-hand side of (3.54) can clearly be handled in the same manner

as in (3.26) and once a is extended by zero, the first term on the right-hand side of (3.54)

can also be treated in the same way.

Remark 3.1: We note that in order to obtain a priori bounds in the above proof it sufficed

to assume that the data satisfy (1.55) - (1.58). It is in the proof of local existence that we

need the original assumptions on the data (1.12) - (1.18).

Remark 3.2: If, for example, in the case of Theorem 1.1 assumption (1.21) is replaced

with

60 + 0;"() 2dx±Ro+sup (r +r + )(x,t)dx
Jo t>0J 1 (3.55)

+ jr(x, O)dx (r' + r' + r 2 t)(X, t)dX < 62

then one can establish the existence of a unique solution 0 > 0 satisfying (1.22) - (1.25);

moreover,

GizI, Oxxt, 6a,., Ot E L'((O, oo); L 2(O, 1)) n L 2((O, oo); L 2 (O, 1)), (3.56)
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and

Ozz(.,t), Ot(.,t),Ott(.,t) --+ 0 uniformly on [0,1] (3.57)

as t -* o. The arguments used to establish such a result are similar in spirit to the

arguments used to prove Theorem 1.1 except that here there is no need to make use of the

entropy inequality (0.2) or any other consequence of the thermodynamical restrictions.
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